Question

The distance of the point $$\left( {1,\, - 2,\,3} \right)$$   from the plane $$x - y + z = 5$$    measured parallel to the line $$\frac{x}{2} = \frac{y}{3} = \frac{{z - 1}}{{ - 6}}{\text{ is :}}$$

A. $$1$$  
B. $$2$$
C. $$4$$
D. $$2\sqrt 3 $$
Answer :   $$1$$
Solution :
Equation of the line through $$\left( {1,\, - 2,\,3} \right)$$   parallel to the line $$\frac{x}{2} = \frac{y}{3} = \frac{{z - 1}}{{ - 6}}$$     is
$$\frac{{x - 1}}{2} = \frac{{y + 2}}{3} = \frac{{z - 3}}{{ - 6}} = r\,\,\,\,\left( {{\text{say}}} \right)......\left( 1 \right)$$
Then any point on $$\left( 1 \right)$$ is $$\left( {2r + 1,\,3r - 2,\, - 6r + 3} \right)$$
If this point lies on the plane $$x - y + z = 5$$    then
$$\left( {2r + 1} \right) - \left( {3r - 2} \right) + \left( { - 6r + 3} \right) = 5 \Rightarrow r = \frac{1}{7}$$
Hence the point is $$\left( {\frac{9}{7},\, - \frac{{11}}{7},\,\frac{{15}}{7}} \right)$$
Distance between $$\left( {1,\, - 2,\,3} \right)$$   and $$\left( {\frac{9}{7},\, - \frac{{11}}{7},\,\frac{{15}}{7}} \right)$$
$$\eqalign{ & = \sqrt {\left( {\frac{4}{{49}} + \frac{9}{{49}} + \frac{{36}}{{49}}} \right)} \cr & = \sqrt {\left( {\frac{{49}}{{49}}} \right)} \cr & = 1 \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section