Question
The differential equation which represents the three parameter family of circles $${x^2} + {y^2} + 2gx + 2fy + c = 0{\text{ is :}}$$
A.
$$y''' = \frac{{3y'y'{'^2}}}{{1 + y{'^2}}}$$
B.
$$y''' = \frac{{3y'{'^2}}}{{1 + y{'^2}}}$$
C.
$$y''' = \frac{{3y'}}{{1 + y{'^2}}}$$
D.
$$y''' = \frac{{3y'}}{{1 - y{'^2}}}$$
Answer :
$$y''' = \frac{{3y'y'{'^2}}}{{1 + y{'^2}}}$$
Solution :
To eliminate the parameters $$g,\,f$$ and $$c$$ differentiate thrice w.r.t. $$x,$$
$$\eqalign{
& x + yy' + g + fy' = 0......\left( 1 \right) \cr
& 1 + y{'^2} + yy'' + fy'' = 0......\left( 2 \right) \cr
& 3y'y'' + yy''' + fy''' = 0......\left( 3 \right) \cr
& \left( 1 \right)y''' - \left( 2 \right)y''{\text{ gives}} \cr
& y''' + y{'^2}y''' - 3y'y'{'^2} = 0 \cr
& \Rightarrow y''' = \frac{{3y'y'{'^2}}}{{1 + y{'^2}}} \cr} $$