Question

The differential equation $$\left( {1 + {y^2}} \right)x\,dx - \left( {1 + {x^2}} \right)y\,dy = 0$$       represents a family of :

A. ellipses of constant eccentricity
B. ellipses of variable eccentricity
C. hyperbolas of constant eccentricity
D. hyperbolas of variable eccentricity  
Answer :   hyperbolas of variable eccentricity
Solution :
Given $$\frac{{x\,dx}}{{1 + {x^2}}} = \frac{{y\,dy}}{{1 + {y^2}}}$$
Integrating we get,
$$\eqalign{ & \frac{1}{2}\log \left( {1 + {x^2}} \right) = \frac{1}{2}\log \left( {1 + {y^2}} \right) + a \cr & \Rightarrow 1 + {x^2} = c\left( {1 + {y^2}} \right),\,c = {e^{2a}} \cr & {x^2} - c{y^2} = c - 1 \Rightarrow \frac{{{x^2}}}{{c - 1}} - \frac{{{y^2}}}{{\left( {\frac{{c - 1}}{c}} \right)}} = 1......\left( 1 \right) \cr} $$
Clearly $$c > 0{\text{ as }}c = {e^{2a}}$$
Hence, the equation $$\left( 1 \right)$$ gives a family of hyperbolas with eccentricity
$$ = \sqrt {\frac{{c - 1 + \frac{{c - 1}}{c}}}{{c - 1}}} = \sqrt {\frac{{{c^2} - 1}}{{c - 1}}} = \sqrt {c + 1} {\text{ if }}c \ne 1$$
Thus eccentricity varies from member to member of the family as it depends on $$c.$$ If $$c = 1,$$  it is a pair of lines $${x^2} - {y^2} = 0$$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section