Question

The derivative of $${\sin ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right)$$    with respect to $${\cos ^{ - 1}}\left[ {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right]$$    is equal to :

A. $$1$$  
B. $$ - 1$$
C. $$2$$
D. none of these
Answer :   $$1$$
Solution :
$${\text{Let }}s = {\sin ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right)\,{\text{and }}t = {\cos ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$$
we have to find out $$\frac{{ds}}{{dt}}$$  ; Putting $$x = \tan \,\theta ,$$   we get
$$\eqalign{ & s = {\sin ^{ - 1}}\left[ {\frac{{2\,\tan \,\theta }}{{1 + {{\tan }^2}\theta }}} \right] \cr & = {\sin ^{ - 1}}\left( {\sin \,2\theta } \right) \cr & = 2\theta \cr & = 2\,{\tan ^{ - 1}}x \cr & \therefore \,\frac{{ds}}{{dx}} = \frac{{2x}}{{1 + {x^2}}} \cr & {\text{and }}t = {\cos ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right) \cr & = {\cos ^{ - 1}}\left( {\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right) \cr & = {\cos ^{ - 1}}\left( {\cos \,2\theta } \right) \cr & = 2\,\theta \cr & = 2\,{\tan ^{ - 1}}x \cr & \therefore \,\frac{{dt}}{{dx}} = \frac{2}{{1 + {x^2}}} \cr & \therefore \,\frac{{ds}}{{dt}} = \frac{{\frac{{ds}}{{dx}}}}{{\frac{{dt}}{{dx}}}} = \frac{2}{{1 + {x^2}}} \times \frac{{1 + {x^2}}}{2} = 1 \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section