Question

The curve $$\frac{{{x^n}}}{{{a^n}}} + \frac{{{y^n}}}{{{b^n}}} = 2$$   touches the line $$\frac{x}{a} + \frac{y}{b} = 2$$   at the point :

A. $$\left( {b,\,a} \right)$$
B. $$\left( {a,\,b} \right)$$  
C. $$\left( {1,\,1} \right)$$
D. $$\left( {\frac{1}{b},\,\frac{1}{a}} \right)$$
Answer :   $$\left( {a,\,b} \right)$$
Solution :
Differentiating w.r.t.$$x,\,\frac{{n{x^{n - 1}}}}{{{a^n}}} + \frac{{n{y^{n - 1}}}}{{{b^n}}}.\frac{{dy}}{{dx}} = 0$$
$${\text{or }}\frac{{dy}}{{dx}} = - \frac{{{b^n}{x^{n - 1}}}}{{{a^n}{y^{n - 1}}}}$$
$$\therefore $$ The equation of the tangent at $$\left( {\alpha ,\,\beta } \right)$$  is
$$\eqalign{ & y - \beta = - \frac{{{b^n}{\alpha ^{n - 1}}}}{{{a^n}{\beta ^{n - 1}}}}\left( {x - \alpha } \right) \cr & {\text{or }}{a^n}{\beta ^{n - 1}}y + {b^n}{\alpha ^{n - 1}}x = {a^n}{\beta ^n} + {b^n}{\alpha ^n} \cr} $$
But $$\left( {\alpha ,\,\beta } \right)$$  is on the curve.
$$\therefore \,{a^n}{\beta ^{n - 1}}y + {b^n}{\alpha ^{n - 1}}x = {a^n}{b^n}.2......(1)$$
The line touches the curve at $$\left( {\alpha ,\,\beta } \right)$$  if (1) and $$\frac{x}{a} + \frac{y}{b} = 2$$   are identical.
$$\eqalign{ & \therefore \frac{{{b^n}{\alpha ^{n - 1}}}}{{\frac{1}{a}}} = \frac{{{a^n}{\beta ^{n - 1}}}}{{\frac{1}{b}}} = \frac{{2{a^n}{b^n}}}{2} \cr & \Rightarrow {\alpha ^{n - 1}} = {a^{n - 1}},\,{\beta ^{n - 1}} = {b^{n - 1}} \cr & \therefore \,\left( {\alpha ,\,\beta } \right) = \left( {a,\,b} \right) \cr} $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section