Question

The curve described parametrically by $$x = 2 - 3\,\sec \,t,\,y = 1 + 4\,\tan \,t$$       represents :

A. An ellipse centered at $$\left( {2,\,1} \right)$$  and of eccentricity $$\frac{3}{5}$$
B. A circle centered at $$\left( {2,\,1} \right)$$  and of radius $$5$$ units
C. A hyperbola centered at $$\left( {2,\,1} \right)$$  & of eccentricity $$\frac{8}{5}$$
D. A hyperbola centered at $$\left( {2,\,1} \right)$$  & of eccentricity $$\frac{5}{3}$$  
Answer :   A hyperbola centered at $$\left( {2,\,1} \right)$$  & of eccentricity $$\frac{5}{3}$$
Solution :
Given, $$x = 2 - 3\,\sec \,t,\,y = 1 + 4\,\tan \,t$$
$$ \Rightarrow \sec \,t = \frac{{x - 2}}{{ - 3}},\,\tan \,t = \frac{{y - 1}}{4}$$
Since, $${\sec ^2}t - {\tan ^2}t = 1$$
$$\therefore \,\frac{{{{\left( {x - 2} \right)}^2}}}{9} - \frac{{{{\left( {y - 1} \right)}^2}}}{{16}} = 1$$
which is a hyperbola with centre at $$\left( {2,\,1} \right)$$  and eccentricity $$e,$$ given by
$$\eqalign{ & 16 = 9\left( {{e^2} - 1} \right) \cr & \Rightarrow 9{e^2} = 25 \cr & \Rightarrow {e^2} = \frac{{25}}{9} \cr & \Rightarrow e = \frac{5}{3} \cr} $$

Releted MCQ Question on
Geometry >> Locus

Releted Question 1

The equation $$\frac{{{x^2}}}{{1 - r}} - \frac{{{y^2}}}{{1 + r}} = 1,\,\,\,r > 1$$       represents :

A. an ellipse
B. a hyperbola
C. a circle
D. none of these
Releted Question 2

The equation $$2{x^2} + 3{y^2} - 8x - 18y + 35 = k$$       represents :

A. no locus if $$k>0$$
B. an ellipse if $$k<0$$
C. a point if $$k=0$$
D. a hyperbola if $$k>0$$
Releted Question 3

If $$a>2b>0$$    then the positive value of $$m$$ for which $$y = mx - b\sqrt {1 + {m^2}} $$     is a common tangent to $${x^2} + {y^2} = {b^2}$$   and $${\left( {x - a} \right)^2} + {y^2} = {b^2}$$    is :

A. $$\frac{{2b}}{{\sqrt {{a^2} - 4{b^2}} }}$$
B. $$\frac{{\sqrt {{a^2} - 4{b^2}} }}{{2b}}$$
C. $$\frac{{2b}}{{a - 2b}}$$
D. $$\frac{b}{{a - 2b}}$$
Releted Question 4

The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $${y^2} = 4ax$$   is another parabola with directrix :

A. $$x = - a$$
B. $$x = - \frac{a}{2}$$
C. $$x = 0$$
D. $$x = \frac{a}{2}$$

Practice More Releted MCQ Question on
Locus


Practice More MCQ Question on Maths Section