Question

The complex number $${z_1},{z_2}\,{\text{and }}{z_3}$$   satisfying $$\frac{{{z_1} - {z_3}}}{{{z_2} - {z_3}}} = \frac{{1 - i\sqrt 3 }}{2}$$    are the vertices of a triangle which is

A. of area zero
B. right - angled isosceles
C. equilateral  
D. obtuse - angled isosceles
Answer :   equilateral
Solution :
$$\eqalign{ & \frac{{{z_1} - {z_3}}}{{{z_2} - {z_3}}} = \frac{{1 - i\sqrt 3 }}{2} \cr & \Rightarrow \,\,\arg \left( {\frac{{{z_1} - {z_3}}}{{{z_{_2}} - {z_3}}}} \right) = \arg \left( {\frac{{1 - i\sqrt 3 }}{2}} \right) \cr & \Rightarrow \,\,\arg \left( {\cos \left( { - \frac{\pi }{3}} \right) + i\sin \left( { - \frac{\pi }{3}} \right)} \right) \cr & \Rightarrow \,\,{\text{angle}}\,{\text{between}}\,{\text{ }}{z_1} - {z_3}\,{\text{and}}\,{z_2} - {z_3}{\text{ is }}{60^ \circ }. \cr & {\text{and }}\left| {\frac{{{z_1} - {z_3}}}{{{z_2} - {z_3}}}} \right| = \left| {\frac{{1 - i\sqrt 3 }}{2}} \right| \cr & \Rightarrow \,\,\left| {\frac{{{z_1} - {z_3}}}{{{z_2} - {z_3}}}} \right| = 1 \cr} $$
$$ \Rightarrow \,\,\left| {{z_1} - {z_3}} \right| = \left| {{z_2} - {z_3}} \right|$$         NOTE THIS STEP
⇒ The $$\Delta $$ with vertices $${z_1},{z_2}{\text{ and }}{z_3}$$   is isosceles with vertical $$\angle {60^ \circ }.$$  Hence rest of the two angles should also be 60° each.
⇒ Req. $$\Delta $$ is an equilateral $$\Delta .$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section