Question

The coefficient of $$x^n$$ in the expansion of $${e^{{e^x}}}$$ is

A. $$\frac{{{e^x}}}{{n!}}$$
B. $$\frac{{{n^n}}}{{n!}}$$
C. $$\frac{{{1}}}{{n!}}$$
D. None of these  
Answer :   None of these
Solution :
Let $$e^x = z,$$  then
$$\eqalign{ & {e^{{e^x}}} = {e^z} = \sum\limits_{k = 0}^\infty {\frac{{{z^k}}}{{k!}}} = \sum\limits_{k = 0}^\infty {\frac{{{{\left( {{e^x}} \right)}^k}}}{{k!}}} = \sum\limits_{k = 0}^\infty {\frac{{{e^{kx}}}}{{k!}}} \cr & = \left( {1 + \frac{{{e^x}}}{{1!}} + \frac{{{e^{2x}}}}{{2!}} + \frac{{{e^{3x}}}}{{3!}} + .....\,{\text{to }}\infty } \right) \cr & = 1 + \frac{1}{{1!}}\left( {\sum\limits_{n = 0}^\infty {\frac{{{x^n}}}{{n!}}} } \right) + \frac{1}{{2!}}\left( {\sum\limits_{n = 0}^\infty {\frac{{{{\left( {2x} \right)}^n}}}{{n!}}} } \right) + \frac{1}{{3!}}\left( {\sum\limits_{n = 0}^\infty {\frac{{{{\left( {3x} \right)}^n}}}{{n!}}} } \right) + {\text{to}}.....\infty \cr & \therefore {\text{Coefficient of }}{x^n}{\text{ in }}{e^{{e^x}}} \cr & = \frac{1}{{1!}}\left( {\frac{1}{{n!}}} \right) + \frac{1}{{2!}}\left( {\frac{{{2^n}}}{{n!}}} \right) + \frac{1}{{3!}}\left( {\frac{{{3^n}}}{{n!}}} \right) + .....\,{\text{to }}\infty \cr & = \frac{1}{{n!}}\left( {\frac{1}{{1!}} + \frac{{{2^n}}}{{2!}} + \frac{{{3^n}}}{{3!}} + .....\,{\text{to }}\infty } \right) \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section