Question

The coefficient of $$x^n$$ in the expansion of $${\left( {1 - 9x + 20{x^2}} \right)^{ - 1}}\,$$   is

A. $$5^n - 4^n$$
B. $$5^{n + 1} - 4^{n + 1}$$  
C. $$5^{n - 1} - 4^{n - 1}$$
D. None of these
Answer :   $$5^{n + 1} - 4^{n + 1}$$
Solution :
$$\eqalign{ & {\left( {1 - 9x + 20{x^2}} \right)^{ - 1}} = {\left[ {\left( {1 - 4x} \right)\left( {1 - 5x} \right)} \right]^{ - 1}} \cr & = \frac{1}{x}\left[ {\frac{{\left( {1 - 4x} \right) - \left( {1 - 5x} \right)}}{{\left( {1 - 4x} \right) \cdot \left( {1 - 5x} \right)}}} \right] = \frac{1}{x}\left[ {{{\left( {1 - 5x} \right)}^{ - 1}} - {{\left( {1 - 4x} \right)}^{ - 1}}} \right] \cr & = \frac{1}{5}\left[ {\left( {5 - 4} \right)x + \left( {{5^2} - {4^2}} \right){x^2} + \left( {{5^3} - {4^3}} \right){x^3} + ..... + \left( {{5^n} - {4^n}} \right){x^n} + .....} \right] \cr & \therefore {\text{coeff}}{\text{. of }}{x^n} = {5^{n + 1}} - {4^{n + 1}} \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section