Question

The co-efficient of $$x^n$$ in the expansion of $$\frac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$$   is

A. $$\frac{{{4^{n - 1}} + {{\left( { - 2} \right)}^n}}}{{n!}}$$
B. $$\frac{{{4^{n - 1}} + {2^n}}}{{n!}}$$
C. $$\frac{{{4^{n}} + {{\left( { - 2} \right)}^n}}}{{n!}}$$  
D. $$\frac{{{4^{n - 1}} + {{\left( { - 2} \right)}^{n - 1}}}}{{n!}}$$
Answer :   $$\frac{{{4^{n}} + {{\left( { - 2} \right)}^n}}}{{n!}}$$
Solution :
$$\eqalign{ & \frac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}} = {e^{4x}} + {e^{ - 2x}} \cr & = \left[ {1 + 4x + \frac{{{{\left( {4x} \right)}^2}}}{{2!}} + .....} \right] + \left[ {1 + \left( { - 2x} \right) + \frac{{{{\left( { - 2x} \right)}^2}}}{{2!}} + .....} \right] \cr & \therefore {\text{coeff}}{\text{. of }}{x^n} = \frac{{{4^n}}}{{n!}} + \frac{{{{\left( { - 2} \right)}^n}}}{{n!}} \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section