Question

The co-efficient of $${x^3}{y^4}z$$  in the expansion of $${\left( {1 + x + y - z} \right)^9}$$   is

A. $$2 \cdot {\,^9}{C_7} \cdot {\,^7}{C_4}$$
B. $$- 2 \cdot {\,^9}{C_2} \cdot {\,^7}{C_3}$$  
C. $${\,^9}{C_7} \cdot {\,^7}{C_4}$$
D. None of these
Answer :   $$- 2 \cdot {\,^9}{C_2} \cdot {\,^7}{C_3}$$
Solution :
$$\eqalign{ & {\left( {1 + x + y - z} \right)^9} = {\left\{ {\left( {1 - z} \right) + \left( {x + y} \right)} \right\}^9} \cr & {\left( {1 + x + y - z} \right)^9} = {\,^9}{C_0}{\left( {1 - z} \right)^9} + {\,^9}{C_1}{\left( {1 - z} \right)^8}\left( {x + y} \right) + {\,^9}{C_2}{\left( {1 - z} \right)^7}{\left( {x + y} \right)^2} + ..... + {\,^9}{C_7}{\left( {1 - z} \right)^2} \cdot {\left( {x + y} \right)^7} + .....\,\,. \cr} $$
$${x^3}{y^4}$$  appears in $${\left( {x + y} \right)^7}$$  only.
∴ the required co-efficient $$ = {\,^9}{C_7}\left( { - 2} \right) \cdot {\,^7}{C_4}.$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section