Question

The chord $$AB$$ of the parabola $${y^2} = 4ax$$   cuts the axis of the parabola at $$C.$$ If $$A = \left( {at_1^2,\,2a{t_1}} \right),\,B = \left( {at_2^2,\,2a{t_2}} \right)$$       and $$AC:AB = 1:3$$    then :

A. $${t_2} = 2{t_1}$$
B. $${t_2} + 2{t_1} = 0$$  
C. $${t_1} + 2{t_2} = 0$$
D. none of these
Answer :   $${t_2} + 2{t_1} = 0$$
Solution :
Parabola mcq solution image
$$\eqalign{ & {\text{Here, }}C = \left( {\frac{{2at_1^2 + at_2^2}}{3},\,\frac{{4a{t_1} + 2a{t_2}}}{3}} \right) \cr & {\text{It line on }}y = 0 \cr & \therefore \,\,\frac{{4a{t_1} + 2a{t_2}}}{3} = 0 \cr} $$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section