Question

The centre of a circle passing through the points $$\left( {0,\,0} \right),\,\left( {1,\,0} \right)$$   and touching the circle $${x^2} + {y^2} = 9$$    is-

A. $$\left( {\frac{3}{2},\,\frac{1}{2}} \right)$$
B. $$\left( {\frac{1}{2},\,\frac{3}{2}} \right)$$
C. $$\left( {\frac{1}{2},\,\frac{1}{2}} \right)$$
D. $$\left( {\frac{1}{2},\, - {2^{\frac{1}{2}}}} \right)$$  
Answer :   $$\left( {\frac{1}{2},\, - {2^{\frac{1}{2}}}} \right)$$
Solution :
Let the equation of the circle be
$${x^2} + {y^2} + 2gx + 2fy + c = 0$$
As this circle passes through $$\left( {0,\,0} \right)$$  and $$\left( {1,\,0} \right),$$  we get $$c=0,\,\,1+2g=0$$
$$ \Rightarrow g = - \frac{1}{2}$$
According to the question this circle touches the given circle $${x^2} + {y^2} = 9$$
$$ \Rightarrow 2 \times $$   radius of required circle $$=$$ radius of given circle
$$\eqalign{ & \Rightarrow 2\sqrt {{g^2} + {f^2}} = 3 \cr & \Rightarrow {g^2} + {f^2} = \frac{9}{4} \cr & \Rightarrow \frac{1}{4} + {f^2} = \frac{9}{4} \cr & \Rightarrow {f^2} = 2\,\,\,\,\, \cr & \Rightarrow f = \pm \sqrt 2 \cr} $$
$$\therefore $$ The centre is $$\left( {\frac{1}{2},\,\sqrt 2 } \right),\,\,\left( {\frac{1}{2},\, - \sqrt 2 } \right)$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section