Question

The area of the smaller segment cut off from the circle $${x^2} + {y^2} = 9$$   by $$x = 1$$  is :

A. $$\frac{1}{2}\left( {9\,{{\sec }^{ - 1}}3 - \sqrt 8 } \right){\text{sq}}{\text{.unit}}$$
B. $$\left( {9\,{{\sec }^{ - 1}}3 - \sqrt 8 } \right){\text{sq}}{\text{.unit}}$$  
C. $$\left( {\sqrt 8 - 9\,{{\sec }^{ - 1}}3} \right){\text{sq}}{\text{.unit}}$$
D. None of the above
Answer :   $$\left( {9\,{{\sec }^{ - 1}}3 - \sqrt 8 } \right){\text{sq}}{\text{.unit}}$$
Solution :
Given, equation of the circle is $${x^2} + {y^2} = 9$$
Application of Integration mcq solution image
$$\therefore $$  Area of the smaller segment cut off from the circle $${x^2} + {y^2} = 9$$   by $$x = 1,$$  is given by
$$\eqalign{ & A = 2\int_1^3 {\sqrt {9 - {x^2}} } dx \cr & \,\,\,\,\, = 2.\frac{1}{2}\left[ {x\sqrt {9 - {x^2}} + 9\,{{\sin }^{ - 1}}\frac{x}{3}} \right]_1^3 \cr & \,\,\,\,\, = \left[ {3.\sqrt {9 - 9} + 9\,{{\sin }^{ - 1}}\left( {\frac{3}{3}} \right) - 1.\sqrt {9 - 1} - 9\,{{\sin }^{ - 1}}\left( {\frac{1}{3}} \right)} \right] \cr & \,\,\,\,\, = \left( {9\,{{\sec }^{ - 1}}3 - \sqrt 8 } \right){\text{sq}}{\text{.unit}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section