Question

The area of the region (in sq. units), in the first quadrant bounded by the parabola $$y = 9{x^2}$$   and the lines $$x = 0,\, y = 1$$   and $$y = 4,$$  is :

A. $$\frac{7}{9}$$
B. $$\frac{{14}}{3}$$
C. $$\frac{7}{3}$$
D. $$\frac{{14}}{9}$$  
Answer :   $$\frac{{14}}{9}$$
Solution :
Required area
$$\eqalign{ & = \int\limits_{y = 1}^4 {\sqrt {\frac{y}{9}} dy} \cr & = \frac{1}{3}\int\limits_{y = 1}^4 {{y^{\frac{1}{2}}}dy} \cr & = \frac{1}{3} \times \frac{2}{3}\left| {\left( {{y^{\frac{3}{2}}}} \right)} \right|_1^4 \cr & = \frac{2}{9}\left[ {{{\left( {{4^{\frac{1}{2}}}} \right)}^3} - {{\left( {{1^{\frac{1}{2}}}} \right)}^3}} \right] \cr & = \frac{{14}}{9}{\text{ sq}}{\text{. units}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section