Question

The area of the region formed by $${x^2} + {y^2} - 6x - 4y + 12 \leqslant 0,\,y \leqslant x{\text{ and }}x \leqslant \frac{5}{2}{\text{ is :}}$$

A. $$\left( {\frac{\pi }{6} - \frac{{\sqrt 3 + 1}}{8}} \right){\text{ sq}}{\text{.}}\,{\text{unit}}$$
B. $$\left( {\frac{\pi }{6} + \frac{{\sqrt 3 - 1}}{8}} \right){\text{ sq}}{\text{.}}\,{\text{unit}}$$
C. $$\left( {\frac{\pi }{6} - \frac{{\sqrt 3 - 1}}{8}} \right){\text{ sq}}{\text{.}}\,{\text{unit}}$$  
D. None of these
Answer :   $$\left( {\frac{\pi }{6} - \frac{{\sqrt 3 - 1}}{8}} \right){\text{ sq}}{\text{.}}\,{\text{unit}}$$
Solution :
Application of Integration mcq solution image
The required area
$$\eqalign{ & {\text{ = }}\int_2^{\frac{5}{2}} {x\,dx - } \int_2^{\frac{5}{2}} {\left[ {2 - \sqrt {1 - {{\left( {x - 3} \right)}^2}} } \right]dx} \cr & = \left[ {\frac{{{x^2}}}{2}} \right]_2^{\frac{5}{2}} - \left[ {2x} \right]_2^{\frac{5}{2}} + \left[ {\frac{{x - 3}}{2}\sqrt {1 - {{\left( {x - 3} \right)}^2}} + \frac{1}{2}{{\sin }^{ - 1}}\left( {x - 3} \right)} \right]_2^{\frac{5}{2}} \cr & = \frac{9}{8} - 1 + \left( { - \frac{{\sqrt 3 }}{8} + \frac{\pi }{6}} \right) \cr & = \frac{\pi }{6} - \frac{{\sqrt 3 - 1}}{8}{\text{ sq}}{\text{. unit}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section