The area of the region enclosed by the curves $$y = x,\,x = e,\,y = \frac{1}{x}$$ and the positive $$x$$-axis is
A.
$$1$$ square unit
B.
$$\frac{3}{2}$$ square unit
C.
$$\frac{5}{2}$$ square unit
D.
$$\frac{1}{2}$$ square unit
Answer :
$$\frac{3}{2}$$ square unit
Solution :
Area of required region $$AOBC :$$
$$\eqalign{
& = \int\limits_0^1 {x\,dx} + \int\limits_1^e {\frac{1}{x}dx} \cr
& = \frac{1}{2} + 1 \cr
& = \frac{3}{2}\,\,{\text{sq}}{\text{. units}} \cr} $$
Releted MCQ Question on Calculus >> Application of Integration
Releted Question 1
The area bounded by the curves $$y = f\left( x \right),$$ the $$x$$-axis and the ordinates $$x = 1$$ and $$x = b$$ is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$ Then $$f\left( x \right)$$ is-