Question

The area of the region enclosed by the curves $$y = x\,{\log _e}x$$   and $$y = 2x - 2{x^2}$$   is :

A. $$\frac{5}{{12}}$$
B. $$\frac{7}{{12}}$$  
C. $$1$$
D. $$\frac{4}{7}$$
Answer :   $$\frac{7}{{12}}$$
Solution :
Curve tracing, $$y = x\,{\log _e}x$$
Clearly $$x > 0,$$
For $$0 < x < 1,\,x\,{\log _e}x < 0,{\text{ and for }}x > 1,\,x\,{\log _e}x > 0$$
Also $$x\,{\log _e}x = 0{\text{ or }}x = 1$$
Further $$\frac{{dy}}{{dx}} = 0 \Rightarrow 1 + {\log _e}x = 0{\text{ or }}x = \frac{1}{e},$$       which is point of minima.
Application of Integration mcq solution image
Required area
$$\eqalign{ & = \int\limits_0^1 {\left( {2x - 2{x^2}} \right)dx} - \int\limits_0^1 {x\,\log \,x\,dx} \cr & = \left[ {{x^2} - \frac{{2{x^3}}}{3}} \right]_0^1 - \left[ {\frac{{{x^2}}}{2}\log \,x - \frac{{{x^2}}}{4}} \right]_0^1 \cr & = \left( {1 - \frac{2}{3}} \right) - \left[ {0 - \frac{1}{4} - \frac{1}{2}\mathop {\lim }\limits_{x \to 0} {x^2}\log \,x} \right] \cr & = \frac{1}{3} + \frac{1}{4} \cr & = \frac{7}{{12}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section