Question

The area of the region bounded by the locus of a point $$P$$ satisfying $$d\left( {P,\,A} \right) = 4,$$   where $$A$$ is $$\left( {1,\,2} \right)$$  is :

A. $$64 \,{\text{sq}}{\text{. units}}$$  
B. $$54 \,{\text{sq}}{\text{. units}}$$
C. $$16\pi \,{\text{sq}}{\text{. units}}$$
D. None of these
Answer :   $$64 \,{\text{sq}}{\text{. units}}$$
Solution :
We have, $${\text{max}}\left\{ {\left| {x - 1} \right|,\,\left| {y - 2} \right|} \right\} = 4$$
If $$\left\{ {\left| {x - 1} \right| \geqslant \left| {y - 2} \right|} \right\},$$
then $$\left| {x - 1} \right| = 4,$$
i.e., if $$\left( {x + y - 3} \right)\left( {x - y + 1} \right) \geqslant 0,$$
then $$x = - 3{\text{ or }}5$$
If $$\left| {y - 2} \right| \geqslant \left| {x - 1} \right|,$$
then $$\left| {y - 2} \right| = 4$$
i.e., $$\left( {x + y - 3} \right)\left( {x - y + 1} \right) \leqslant 0,$$
then $$y = - 2{\text{ or }}6$$
So, the locus of $$P$$ bounds a square, the equation of whose sides are $$x = - 3,\,x = 5,\,y = - 2,\,y = 6$$
Thus, the area is $${\left( 8 \right)^2} = 64.$$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section