Question

The area of the region bounded by the curves $$y = \left| {x - 1} \right|$$   and $$y = 3 - \left| x \right|$$   is-

A. $$6$$ square units
B. $$2$$ square units
C. $$3$$ square units
D. $$4$$ square units  
Answer :   $$4$$ square units
Solution :
Application of Integration mcq solution image
$$\eqalign{ & A = \int\limits_{ - 1}^0 {\left\{ {\left( {3 + x} \right) - \left( { - x + 1} \right)} \right\}dx + } \int\limits_0^1 {\left\{ {\left( {3 - x} \right) - \left( { - x + 1} \right)} \right\}dx + } \int\limits_1^2 {\left\{ {\left( {3 - x} \right) - \left( {x - 1} \right)} \right\}dx} \cr & = \int\limits_{ - 1}^0 {\left( {2 + 2x} \right)dx + } \int\limits_0^1 {2\,dx + } \int\limits_1^2 {\left( {4 - 2x} \right)dx} \cr & = \left[ {2x - {x^2}} \right]_{ - 1}^0 + \left[ {2x} \right]_0^1 + \left[ {4x - {x^2}} \right]_1^2 \cr & = 0 - \left( { - 2 + 1} \right) + \left( {2 - 0} \right) + \left( {8 - 4} \right) - \left( {4 - 1} \right) \cr & = 1 + 2 + 4 - 3 \cr & = 4\,{\text{sq}}{\text{.}}\,{\text{units}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section