Question

The area of the portion enclosed by the curve $$\sqrt x + \sqrt y = \sqrt a $$    and the axes of reference is :

A. $$\frac{{{a^2}}}{6}$$  
B. $${{a^2}}$$
C. $$\frac{{{a^2}}}{2}$$
D. $$\frac{{{a^2}}}{4}$$
Answer :   $$\frac{{{a^2}}}{6}$$
Solution :
$$\eqalign{ & y = {\left( {\sqrt a - \sqrt x } \right)^2} \cr & = a + x - 2\sqrt {ax} \cr & {\text{Hence the required area}} \cr & = \int_0^a {y.dx} \cr & = \int_0^a {a + x - 2\sqrt {ax} .dx} \cr & = \left[ {ax + \frac{{{x^2}}}{2} - \frac{{4x\sqrt {ax} }}{3}} \right]_0^a \cr & = {a^2} + \frac{{{a^2}}}{2} - \frac{{4{a^2}}}{3} \cr & = \frac{{3{a^2}}}{2} - \frac{{4{a^2}}}{3} \cr & = \frac{{9{a^2} - 8{a^2}}}{6} \cr & = \frac{{{a^2}}}{6}\,\,{\text{sq}}{\text{.}}\,{\text{units}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section