Question

The area (in sq. units) of the region $$\left\{ {\left( {x,\,y} \right):{y^2} \geqslant 2x\,\,{\text{and}}\,{x^2} + {y^2} \leqslant 4x,\,x \geqslant 0,\,y \geqslant 0} \right\}$$          is :

A. $$\pi - \frac{{4\sqrt 2 }}{3}$$
B. $$\frac{\pi }{2} - \frac{{2\sqrt 2 }}{3}$$
C. $$\pi - \frac{4}{3}$$
D. $$\pi - \frac{8}{3}$$  
Answer :   $$\pi - \frac{8}{3}$$
Solution :
Application of Integration mcq solution image
Points of intersection of the two curves are $$\left( {0,\,0} \right),\,\left( {2,\,2} \right)$$   and $$\left( {2,\, - 2} \right)$$
Area $$=$$ Area $$\left( {OAB} \right) - $$   area under parabola $$\left( {0{\text{ to }}2} \right)$$
$$\eqalign{ & = \frac{{\pi \times {{\left( 2 \right)}^2}}}{4} - \int\limits_0^2 {\sqrt 2 } \sqrt x \,dx \cr & = \pi - \frac{8}{3} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section