Question

The area (in sq. units) bounded by the parabola $$y = {x^2} - 1,$$   the tangent at the point $$\left( {2,\,3} \right)$$  to it and the $$y$$-axis is:

A. $$\frac{8}{3}$$  
B. $$\frac{32}{3}$$
C. $$\frac{56}{3}$$
D. $$\frac{14}{3}$$
Answer :   $$\frac{8}{3}$$
Solution :
Application of Integration mcq solution image
$$\eqalign{ & \because {\text{Curve is given as}}: \cr & y = {x^2} - 1 \cr & \Rightarrow \frac{{dy}}{{dx}} = 2x \cr & \Rightarrow {\left( {\frac{{dy}}{{dx}}} \right)_{\left( {2,\,3} \right)}} = 4 \cr & \therefore {\text{Equation of tangent at }}\left( {2,{\text{ }}3} \right) \cr & \left( {y - 3} \right) = {\text{4}}\left( {x - 2} \right) \cr & \Rightarrow y = 4x - 5 \cr & {\text{but }}x = 0 \cr & \Rightarrow y = - 5 \cr} $$
Here the curve cuts $$y$$-axis
$$\eqalign{ & \therefore {\text{Required area:}} \cr & = \frac{1}{4}\int\limits_{ - 5}^3 {\left( {y + 5} \right)dy} - \int\limits_{ - 1}^3 {\sqrt {y + 1} \,dy} \cr & = \frac{1}{4}\left[ {\frac{{{y^2}}}{2} + 5y} \right]_{ - 5}^3\frac{{ - 2}}{3}\left[ {{{\left( {y + 1} \right)}^{\frac{3}{2}}}} \right]_{ - 1}^3 \cr & = \frac{1}{4}\left[ {\frac{9}{2} + 15 - \frac{{25}}{2} + 25} \right] - \frac{2}{3}\left[ {{4^{\frac{3}{2}}} - 0} \right] \cr & = \frac{{32}}{4} - \frac{{16}}{3} \cr & = \frac{8}{3}{\text{ sq}}{\text{. units}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section