Question

The area enclosed by the curves $$y = \sin \,x + \cos \,x$$    and $$y = \left| {\cos \,x - \sin \,x} \right|$$    over the interval $$\left[ {0,\,\frac{\pi }{2}} \right]$$  is-

A. $$4\left( {\sqrt 2 - 1} \right)$$
B. $$2\sqrt 2 \left( {\sqrt 2 - 1} \right)$$  
C. $$2\left( {\sqrt 2 + 1} \right)$$
D. $$2\sqrt 2 \left( {\sqrt 2 + 1} \right)$$
Answer :   $$2\sqrt 2 \left( {\sqrt 2 - 1} \right)$$
Solution :
The rough graph of $$y = \sin \,x + \cos \,x$$    and $$y = \left| {\cos \,x - \sin \,x} \right|$$    suggest the required area is
$$ = \int_0^{\frac{\pi }{2}} {\left[ {\left( {\sin \,x + \cos \,x} \right) - \left| {\cos \,x - \sin \,x} \right|} \right]} dx$$
Application of Integration mcq solution image
$$\eqalign{ & = \int_0^{\frac{\pi }{4}} {2\,\sin \,x\,dx} + \int_{\frac{\pi }{4}}^{\frac{\pi }{2}} {2\,\cos \,x\,dx} \cr & = 2\left[ {\left( { - \cos \,x} \right)_0^{\frac{\pi }{4}} + \left( {\sin \,x} \right)_{\frac{\pi }{4}}^{\frac{\pi }{2}}} \right] \cr & = 2\sqrt 2 \left( {\sqrt 2 - 1} \right) \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section