Question

The area enclosed by the curve $$x = a\,{\cos ^3}t,\,y = b\,{\sin ^3}t$$     and the positive directions of $$x$$-axis and $$y$$-axis is :

A. $$\frac{{\pi ab}}{4}$$
B. $$\frac{{\pi ab}}{{32}}$$
C. $$\frac{{3\pi ab}}{{32}}$$  
D. $$\frac{{5\pi ab}}{{32}}$$
Answer :   $$\frac{{3\pi ab}}{{32}}$$
Solution :
$$y = 0,$$  when $$t = 0$$  and then $$x = a$$
So desire area
$$\eqalign{ & A = \int\limits_0^a {y\,dx} \cr & \Rightarrow A = \int\limits_{\frac{\pi }{2}}^0 {b\,{{\sin }^3}t\left( { - 3a\,{{\cos }^2}t\,\sin \,t\,dt} \right)} \cr & \Rightarrow A = 3ab\int\limits_0^{\frac{\pi }{2}} {{{\sin }^4}t\,{{\cos }^2}t\,dt} \cr & \Rightarrow A = 3ab\int\limits_0^{\frac{\pi }{2}} {{{\cos }^4}t\,{{\sin }^2}t\,dt} \cr & \therefore \,2A = 3ab\int\limits_0^{\frac{\pi }{2}} {{{\cos }^2}t\,{{\sin }^2}t\,dt} \cr & \Rightarrow 2A = 3ab.\frac{\pi }{{16}} \cr & \Rightarrow A = \frac{{3\pi ab}}{{32}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section