Question

The area bounded by the curve $$y = f\left( x \right),\,y = x$$    and the lines $$x = 1, x = t$$   is $$\left( {t + \sqrt {1 + {t^2}} } \right) - \sqrt 2 - 1\,sq.$$      unit, for all $$t > 1.$$  If $$f\left( x \right)$$  satisfying $$f\left( x \right) > x$$   for all $$x > 1,$$  then $$f\left( x \right)$$  is equal to :

A. $$x + 1 + \frac{x}{{\sqrt {1 + {x^2}} }}$$  
B. $$x + \frac{x}{{\sqrt {1 + {x^2}} }}$$
C. $$1 + \frac{x}{{\sqrt {1 + {x^2}} }}$$
D. $$\frac{x}{{\sqrt {1 + {x^2}} }}$$
Answer :   $$x + 1 + \frac{x}{{\sqrt {1 + {x^2}} }}$$
Solution :
It is given that, $$f\left( x \right) > x,$$   for all $$x > 1.$$  So, area bounded by $$y = f\left( x \right),\,y = x$$    and the lines $$x = 1,\,x = t$$    is given by $$\int_1^t {\left\{ {f\left( x \right) - x} \right\}dx} $$
But this area is given equal to $$\left( {t + \sqrt {1 + {t^2}} - \sqrt 2 - 1} \right)$$     sq unit.
Therefore, $$\int_1^t {\left\{ {f\left( x \right) - x} \right\}dx = t + \sqrt {1 + {t^2}} - \sqrt 2 - 1,{\text{ for all }}t > 1} $$
On differentiating both sides w.r.t. $$t,$$ we get
$$\eqalign{ & f\left( t \right) - t = 1 + \frac{t}{{\sqrt {1 + {t^2}} }}{\text{ for all }}t > 1 \cr & \Rightarrow f\left( t \right) = t + 1 + \frac{t}{{\sqrt {1 + {t^2}} }}{\text{ for all }}t > 1 \cr & {\text{Hence, }}f\left( x \right) = x + 1 + \frac{x}{{\sqrt {1 + {x^2}} }}{\text{ for all }}x > 1 \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section