Question

The area bounded by $$f\left( x \right) = {x^2},\,0 \leqslant x \leqslant 1,\,g\left( x \right) = - x + 2,\,1 \leqslant x \leqslant 2$$          and $$x$$-axis is :

A. $$\frac{3}{2}$$
B. $$\frac{4}{3}$$
C. $$\frac{8}{3}$$
D. None of these  
Answer :   None of these
Solution :
Required area $$=$$ Area of $$OAB\,+$$   Area of $$ABC$$
Application of Integration mcq solution image
Now, Area of $$OAB$$
$$\eqalign{ & = \int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {g\left( x \right)dx} \cr & = \int\limits_0^1 {{x^2}dx} + \int\limits_1^2 {\left( { - x + 2} \right)dx} \cr & = \left. {\frac{{{x^3}}}{3}} \right|_0^1 + \left[ {\frac{{ - {x^2}}}{2} + 2x} \right]_1^2 \cr & = \frac{1}{3} + \left[ {\left( {\frac{{ - 4}}{2} + 4} \right) - \left( {\frac{{ - 1}}{2} + 2} \right)} \right] \cr & = \frac{1}{3} + \frac{1}{2} \cr & = \frac{5}{6}{\text{ sq}}{\text{. unit}} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section