Question

The area between the parabolas $${x^2} = \frac{y}{4}$$  and $${x^2} = 9y$$   and the straight line $$y = 2$$  is:

A. $$20\sqrt 2 $$
B. $$\frac{{10\sqrt 2 }}{3}$$
C. $$\frac{{20\sqrt 2 }}{3}$$  
D. $$10\sqrt 2 $$
Answer :   $$\frac{{20\sqrt 2 }}{3}$$
Solution :
Given curves $${x^2} = \frac{y}{4}$$  and $${x^2} = 9y$$  are the parabolas whose equations can be written as $$y = 4{x^2}$$  and $$y = \frac{1}{9}{x^2}.$$
Also, given $$y = 2.$$
Application of Integration mcq solution image
Now, shaded portion shows the required area which is symmetric.
$$\eqalign{ & \therefore {\text{Area}} = 2\int\limits_0^2 {\left( {\sqrt {9y} - \sqrt {\frac{y}{4}} } \right)dy} \cr & {\text{Area}} = 2\int\limits_0^2 {\left( {3\sqrt y - \sqrt {\frac{y}{2}} } \right)dy} \cr & = 2\left[ {\frac{2}{3} \times 3.{y^{\frac{3}{2}}} - \frac{1}{2} \times \frac{2}{3}.{y^{\frac{3}{2}}}} \right]_0^2 \cr & = 2\left[ {2{y^{\frac{3}{2}}} - \frac{1}{3}{y^{\frac{3}{2}}}} \right]_0^2 \cr & = \left. {2 \times \frac{5}{3}{y^{\frac{3}{2}}}} \right|_0^2 \cr & = 2.\frac{5}{3}.2\sqrt 2 \cr & = \frac{{20\sqrt 2 }}{3} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section