Question

The angles of elevation of the top of a tower standing on a horizontal plane from two points on a line passing through the foot of the tower at distances $$49\,m$$  and $$36\,m$$  are $${43^ \circ }$$ and $${47^ \circ }$$ respectively. What is the height of the tower ?

A. $$40\,m$$
B. $$42\,m$$  
C. $$45\,m$$
D. $$47\,m$$
Answer :   $$42\,m$$
Solution :
$$\eqalign{ & AB = h\left( {{\text{height of the tower}}} \right) \cr & BD = 36\,m;\,\,BC = 49\,m \cr & \angle D = {47^ \circ };\,\,\angle C = {43^ \circ } \cr} $$
Properties and Solutons of Triangle mcq solution image
$$\eqalign{ & {\text{Now, in }}\Delta \,ABD, \cr & \tan {47^ \circ } = \frac{h}{{36\,m}}\,\,\,\,.....\left( {\text{i}} \right) \cr & {\text{and in }}\Delta \,ABC,\tan {43^ \circ } = \frac{h}{{49\,m}} \cr & \tan \left( {{{90}^ \circ } - {{47}^ \circ }} \right) = \frac{h}{{49}} \cr & \therefore \cot {47^ \circ } = \frac{h}{{49}}\,\,\,\,.....\left( {{\text{ii}}} \right) \cr} $$
Multiplying equations (i) and (ii)
$$\eqalign{ & \tan {47^ \circ } \cdot \cot {47^ \circ } = \frac{h}{{36}} \times \frac{h}{{49}} = 1 = \frac{{{h^2}}}{{36 \times 49}} \cr & h = 6 \times 7 = 42\,m \cr} $$
$$\therefore $$ Option $$\left( {B} \right)$$  is correct.

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section