Question

The angles of a triangle, two of whose sides are represented by the vectors $$\sqrt 3 \left( {\overrightarrow a \times \overrightarrow b } \right)$$   and $$\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow a $$    where $$\overrightarrow b $$ is a non-zero vector and $$\overrightarrow a $$ is a unit vector are :

A. $${\tan ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right);\,{\tan ^{ - 1}}\left( {\frac{1}{2}} \right);\,{\tan ^{ - 1}}\left( {\frac{{\sqrt 3 + 2}}{{1 - 2\sqrt 3 }}} \right)$$
B. $${\tan ^{ - 1}}\left( {\sqrt 3 } \right);\,{\tan ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right);\,{\cot ^{ - 1}}\left( 0 \right)$$  
C. $${\tan ^{ - 1}}\left( {\sqrt 3 } \right);\,{\tan ^{ - 1}}\left( 2 \right);\,{\tan ^{ - 1}}\left( {\frac{{\sqrt 3 + 2}}{{2\sqrt 3 - 1}}} \right)$$
D. $${\tan ^{ - 1}}\left( {\sqrt 3 } \right);\,{\tan ^{ - 1}}\left( {\sqrt 2 } \right);\,{\tan ^{ - 1}}\left( {\frac{{\sqrt 2 + 3}}{{3\sqrt 2 - 1}}} \right)$$
Answer :   $${\tan ^{ - 1}}\left( {\sqrt 3 } \right);\,{\tan ^{ - 1}}\left( {\frac{1}{{\sqrt 3 }}} \right);\,{\cot ^{ - 1}}\left( 0 \right)$$
Solution :
Let $$ABC$$  be a triangle in which the given vectors are represented by the sides $$AB$$   and $$AC$$
$$\eqalign{ & {\text{i}}{\text{.e}}{\text{., }}AB = \sqrt 3 \left( {a \times b} \right) \cr & {\text{and }}AC = b - \left( {a.b} \right)a \cr & \therefore \,AB.AC = \sqrt {3\left( {a \times b} \right)\left[ {b - \left( {a.b} \right)a} \right]} \cr & = \sqrt {3\left[ {\left( {a \times b} \right).b\left( {a.b} \right)\left( {a \times b} \right)a} \right]} \cr & = \sqrt {3\left( {0 - 0} \right)} \cr & = 0 \cr & {\text{Therefore, }}\angle BAC = {90^ \circ } \cr & A{B^2} = {\left| {\sqrt 3 \left( {a \times b} \right)} \right|^2} = 3{\left( {a \times b} \right)^2} \cr & A{C^2} = {\left[ {b - \left( {a.b} \right)a} \right]^2}......\left( {\text{i}} \right) \cr & = {\left( b \right)^2} + {\left( {a.b} \right)^2}{a^2} - 2\left( {b.a} \right)\left( {a.b} \right) \cr & = {\left( b \right)^2} + {\left( {a.b} \right)^2} - 2{\left( {a.b} \right)^2} \cr & = {\left( b \right)^2} - {\left( {a.b} \right)^2} = {\left( b \right)^2} = {\left| a \right|^2}{\left| b \right|^2}{\cos ^2}\theta \cr & = {\left( b \right)^2}\left[ {1 - {{\left| a \right|}^2}{{\cos }^2}\theta } \right] \cr & = {\left( b \right)^2}\left( {1 - {{\cos }^2}\theta } \right) \cr & = {\left( b \right)^2}{\sin ^2}\theta \cr & = {\left| a \right|^2}{\left| b \right|^2}{\sin ^2}\theta \cr & = {\left( {a \times b} \right)^2}......\left( {{\text{ii}}} \right) \cr & {\text{Dividing equation }}\left( {\text{i}} \right){\text{ by }}\left( {{\text{ii}}} \right){\text{ we get}} \cr & \frac{{A{B^2}}}{{A{C^2}}} = \frac{{3{{\left( {a \times b} \right)}^2}}}{{{{\left( {a \times b} \right)}^2}}} \cr & \Rightarrow A{B^2} = 3.A{C^2} \cr & \Rightarrow AB = \sqrt 3 AC \cr & \tan \,C = \frac{{AB}}{{AC}} = \frac{{\sqrt 3 AC}}{{AC}} = \sqrt 3 \cr & \therefore \,\angle C = {60^ \circ } \cr & \therefore \,\angle A = {180^ \circ } - {90^ \circ } - {60^ \circ } = {30^ \circ } \cr & {\text{Hence, angles of the triangle are 3}}{0^ \circ },\,{90^ \circ }{\text{ and }}{60^ \circ } \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section