Question

The angle of intersection of the circles $${x^2} + {y^2} = 4$$   and $${x^2} + {y^2} = 2x + 2y$$     is :

A. $$\frac{\pi }{2}$$
B. $$\frac{\pi }{3}$$
C. $$\frac{\pi }{6}$$
D. $$\frac{\pi }{4}$$  
Answer :   $$\frac{\pi }{4}$$
Solution :
Equations of the circles are
$$\eqalign{ & {x^2} + {y^2} = 4......\left( 1 \right) \cr & {\text{and }}{x^2} + {y^2} = 2x + 2y......\left( 2 \right) \cr} $$
Centre of $$\left( 1 \right)$$ is $${C_1} \equiv \left( {0,\,0} \right)\,;$$   Radius of $$\left( 1 \right) = {r_1} = 2\,;$$
Centre of $$\left( 2 \right)$$ is $${C_2} \equiv \left( {1,\,1} \right)\,;$$   Radius of $$\left( 2 \right) = {r_2} = \sqrt 2 $$
$$d = $$  distance between centers $$ = {C_1}{C_2} = \sqrt {1 + 1} = \sqrt 2 $$
If $$\theta $$ is the angle of intersection of two circles, then
$$\eqalign{ & \cos \,\theta = \frac{{r_1^2 + r_2^2 - {d^2}}}{{2{r_1}{r_2}}} = \frac{{{{\left( 2 \right)}^2} + {{\left( {\sqrt 2 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}}{{2.2\sqrt 2 }} = \frac{1}{{\sqrt 2 }} \cr & \therefore \,\theta = \frac{\pi }{4} \cr} $$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section