Question

The angle between the pair of tangents from the point $$\left( {1,\,\frac{1}{2}} \right)$$  to the circle $${x^2} + {y^2} + 4x + 2y - 4 = 0$$      is :

A. $${\cos ^{ - 1}}\frac{4}{5}$$
B. $${\sin ^{ - 1}}\frac{4}{5}$$  
C. $${\sin ^{ - 1}}\frac{3}{5}$$
D. none of these
Answer :   $${\sin ^{ - 1}}\frac{4}{5}$$
Solution :
Equation of pair tangents to the circle $${x^2} + {y^2} + 4x + 2y - 4 = 0$$      from the point $$\left( {1,\,\frac{1}{2}} \right)$$  is
$$\eqalign{ & S{S_1} = {T^2}\left( {{x^2} + {y^2} + 4x + 2y - 4} \right)\left( {1 + \frac{1}{4} + 4 + 1 - 4} \right) \cr & = {\left( {x + \frac{1}{2}y + 2\left( {x + 1} \right)y + \frac{1}{2} - 4} \right)^2} \cr & \Rightarrow \frac{9}{4}\left( {{x^2} + {y^2} + 4x + 2y - 4} \right) = {\left( {3x + \frac{3}{2}y - \frac{3}{2}} \right)^2} \cr & \Rightarrow \frac{9}{4}{x^2} + \frac{9}{4}{y^2} + 9x + \frac{9}{2}y - 9 = 9{x^2} + \frac{9}{4}{y^2} + \frac{9}{4} + 9xy - \frac{9}{2}y - 9x \cr & \Rightarrow \frac{{27}}{4}{x^2} - 18x - 9y + 9xy + \frac{{45}}{4} = 0 \cr & \Rightarrow \frac{3}{4}{x^2} + xy - 2x - y + \frac{5}{4} = 0 \cr & \Rightarrow 3{x^2} + 4xy - 8x - 4y + 5 = 0 \cr} $$
It $$\theta $$ is the angle of these lines, then
$$\eqalign{ & \tan \,\theta = \frac{{2\sqrt {{h^2} - ab} }}{{a + b}} \cr & \Rightarrow \tan \,\theta = \frac{{2\sqrt 4 }}{3} \cr & \Rightarrow \tan \,\theta = \frac{4}{3} \cr & \Rightarrow \sin \,\theta = \frac{4}{5} \cr & \Rightarrow \theta = {\sin ^{ - 1}}\left[ {\frac{4}{5}} \right] \cr} $$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section