Question

‘The angle between a pair of tangents drawn from a point $$P$$ to the circle $${x^2} + {y^2} + 4x - 6y + 9\,{\sin ^2}\alpha + 13\,{\cos ^2}\alpha = 0$$         is $$2\alpha .$$  The equation of the locus of the point $$P$$ is-

A. $${x^2} + {y^2} + 4x - 6y + 4 = 0$$
B. $${x^2} + {y^2} + 4x - 6y - 9 = 0$$
C. $${x^2} + {y^2} + 4x - 6y - 4 = 0$$
D. $${x^2} + {y^2} + 4x - 6y + 9 = 0$$  
Answer :   $${x^2} + {y^2} + 4x - 6y + 9 = 0$$
Solution :
Centre of the circle
$${x^2} + {y^2} + 4x - 6y + 9\,{\sin ^2}\alpha + 13\,{\cos ^2}\alpha = 0$$
is $$C\left( { - 2,\,3} \right)$$   and its radius is
$$\eqalign{ & \sqrt {{2^2} + {{\left( { - 3} \right)}^2} - 9\,{{\sin }^2}\alpha + 13\,{{\cos }^2}\alpha } \cr & = \sqrt {4 + 9 - 9\,{{\sin }^2}\alpha + 13\,{{\cos }^2}\alpha } \cr & = 2\,\sin \,\alpha \cr} $$
Circle mcq solution image
Let $$P\left( {h,\,k} \right)$$   be any point on the locus. The $$\angle APC = \alpha $$
Also $$\angle PAC = \frac{\pi }{2}$$
That is, triangle $$APC$$  is a right triangle.
Thus, $$\sin \,\alpha = \frac{{AC}}{{PC}} = \frac{{2\,\sin \,\alpha }}{{\sqrt {{{\left( {h + 2} \right)}^2} + {{\left( {k - 3} \right)}^2}} }}$$
$$\eqalign{ & \Rightarrow \sqrt {{{\left( {h + 2} \right)}^2} + {{\left( {k - 3} \right)}^2}} = 2 \cr & \Rightarrow {\left( {h + 2} \right)^2} + {\left( {k - 3} \right)^2} = 4 \cr & {\text{or}}\,\,{h^2} + {k^2} + 4h - 6k + 9 = 0 \cr} $$
Thus required equation of the locus is $${x^2} + {y^2} + 4x - 6y + 9 = 0$$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section