Solution :

At, $$P$$
$$\eqalign{
& H = {H_1} + {H_{2s}} \cr
& \frac{{kA\left( {{T_A} - {T_P}} \right)}}{{\frac{L}{2}}} \cr
& = \frac{{kA\left( {{T_P} - {T_Q}} \right)}}{{\frac{{3L}}{2}}} + \frac{{kA\left( {{T_P} - {T_Q}} \right)}}{L} \cr
& \therefore \,\,2\left( {{T_A} - {T_P}} \right) = \frac{2}{3}\left( {{T_P} - {T_Q}} \right) + \left( {{T_P} - {T_Q}} \right) \cr
& \therefore \,\,2\left( {{T_A} - {T_P}} \right) = \frac{5}{3}\left( {{T_P} - {T_Q}} \right)\,\,\,.....\left( {\text{i}} \right) \cr
& {\text{At, }}Q \cr
& {H_1} + {H_2} = H \cr
& \therefore \,\,\frac{{kA\left( {{T_P} - {T_Q}} \right)}}{{\frac{{3L}}{2}}} + \frac{{kA\left( {{T_P} - {T_Q}} \right)}}{L} \cr
& = \frac{{kA\left( {{T_Q} - {T_B}} \right)}}{{\frac{L}{2}}}\,\,\,\,\,\,.....\left( {{\text{ii}}} \right) \cr
& \therefore \,\,2\left( {{T_Q} - {T_P}} \right) = \frac{5}{3}\left( {{T_P} - {T_Q}} \right) \cr} $$
From (i) & (ii)
$$\eqalign{
& 2\left( {{T_A} - {T_P}} \right) + 2\left( {{T_Q} - {T_B}} \right) = \frac{{10}}{3}\left( {{T_P} - {T_Q}} \right) \cr
& {T_A} - {T_B} = \frac{8}{3}\left( {{T_P} - {T_Q}} \right) \cr
& \therefore \,\,{T_P} - {T_Q} = \frac{3}{8} \times 120 \cr
& = 45{\,^ \circ }C \cr} $$