Question

Tangent to the curve $$y = {x^2} + 6$$   at a point (1, 7) touches the circle $${x^2} + {y^2} + 16x + 12y + c = 0$$      at a point $$Q.$$  Then the coordinates of $$Q$$ are-

A. $$\left( { - 6,\, - 11} \right)$$
B. $$\left( { - 9,\, - 13} \right)$$
C. $$\left( { - 10,\, - 15} \right)$$
D. $$\left( { - 6,\, - 7} \right)$$  
Answer :   $$\left( { - 6,\, - 7} \right)$$
Solution :
The given curve is $$y = {x^2} + 6$$
Equation of tangent at $$\left( {1,\,7} \right)$$  is
$$\eqalign{ & \frac{1}{2}\left( {y + 7} \right) = x.1 + 6 \cr & \Rightarrow 2x - y + 5 = 0.....(1) \cr} $$
As given this tangent (1) touches the circle $${x^2} + {y^2} + 16x + 12y + c = 0$$       at $$Q$$
Centre of circle $$ = \left( { - 8,\, - 6} \right).$$
Parabola mcq solution image
Then equation of $$CQ$$  which is perpendicular to (1) and passes through $$\left( { - 8,\, - 6} \right)$$  is $$y + 6 = - \frac{1}{2}\left( {x + 8} \right)$$
$$ \Rightarrow x + 2y + 20 = 0.....(2)$$
Now $$Q$$ is points of intersection of (1) and (2)
$$\therefore $$ Solving equation (1) & (2) we get
$$x=-6,\,\,y=-7$$
$$\therefore $$ Required points is $$\left( { - 6,\, - 7} \right)$$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section