Question

Suppose $$f\left( x \right) = {\left( {x + 1} \right)^2}$$     for $$x \geqslant - 1.$$   If $$g\left( x \right)$$  is the function whose graph is the reflection of the graph of $$f\left( x \right)$$  with respect to the line $$y = x,$$  then $$g\left( x \right)$$ equals

A. $$ - \sqrt {x - 1} ,x \geqslant 0$$
B. $$\frac{1}{{{{\left( {x + 1} \right)}^2}}},x > - 1$$
C. $$\sqrt {x + 1} ,x \geqslant - 1$$
D. $$\sqrt {x - 1} ,x \geqslant 0$$  
Answer :   $$\sqrt {x - 1} ,x \geqslant 0$$
Solution :
Given that f $$f\left( x \right) = {\left( {x + 1} \right)^2},x \geqslant - 1$$
Now if $$g\left( x \right)$$  is the reflection of $$f\left( x \right)$$  in the line $$y = x$$   then it can be obtained by interchanging $$x$$ and $$y$$ in $$f\left( x \right)$$
i.e., $$y = {\left( {x + 1} \right)^2}$$   changes to $$x = {\left( {y + 1} \right)^2}$$
$$\eqalign{ & \Rightarrow y + 1 = \sqrt x \cr & \left[ {y + 1 \ne - \sqrt x ,\,{\text{since}}\,y \geqslant - 1\,{\text{as}}\,{\text{in}}\,{\text{figure}}.} \right. \cr & \Rightarrow y = \sqrt x - 1\,{\text{defined}}\,\forall x \geqslant 0 \cr} $$
Function mcq solution image
$$\therefore g\left( x \right) = \sqrt x - 1\,\forall x \geqslant 0$$

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section