Question

Suppose $$f\left( x \right) = {e^{ax}} + {e^{bx}},$$    where $$a \ne b,$$  and that $$f''\left( x \right) - 2f'\left( x \right) - 15f\left( x \right) = 0$$       for all $$x.$$ Then the product $$ab$$   is :

A. $$25$$
B. $$9$$
C. $$ - 15$$  
D. $$ - 9$$
Answer :   $$ - 15$$
Solution :
$$\eqalign{ & \left( {{a^2} - 2a - 15} \right){e^{ax}} + \left( {{b^2} - 2b - 15} \right){e^{bx}} = 0 \cr & {\text{or, }}\left( {{a^2} - 2a - 15} \right) = 0{\text{ and }}\left( {{b^2} - 2b - 15} \right) = 0 \cr & {\text{or, }}\left( {a - 5} \right)\left( {a + 3} \right) = 0{\text{ and }}\left( {b - 5} \right)\left( {b + 3} \right) = 0 \cr & {\text{i}}{\text{.e}}{\text{., }}a = 5{\text{ or }} - 3{\text{ and }}b = 5{\text{ or }} - 3 \cr & \therefore \,a \ne b \cr & {\text{Hence, }}a = 5{\text{ and }}b = - 3{\text{ or }}a = - 3{\text{ and }}b = 5 \cr & {\text{or }}ab = - 15 \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section