Question

Statement-1: The point $$A\left( {1,\,0,\,7} \right)$$   is the mirror image of the point $$B\left( {1,\,6,\,3} \right)$$   in thel ine : $$\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{3}$$
Statement-2: The line $$\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{3}$$     bisects the line segment joining $$A\left( {1,\,0,\,7} \right)$$   and $$B\left( {1,\,6,\,3} \right)$$

A. Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.  
B. Statement-1 is true, Statement-2 is false.
C. Statement-1 is false, Statement-2 is true.
D. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
Answer :   Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
Solution :
The direction ratios of the line segment joining points $$A\left( {1,\,0,\,7} \right)$$   and $$B\left( {1,\,6,\,3} \right)$$   are $$0,\,6,\,-4.$$
The direction ratios of the given line are 1, 2, 3.
Clearly $$1 \times 0 + 2 \times 6 + 3 \times \left( { - 4} \right) = 0$$
So, the given line is perpendicular to line $$AB.$$
Also , the mid point of $$A$$ and $$B$$ is (1, 3, 5) which lies on the given line.
So, the image of $$B$$ in the given line is $$A,$$  because the given line is the perpendicular bisector of line segment joining points $$A$$ and $$B.$$  But statement-2 is not a correct explanation for statement-1.

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section