Question

Statement - 1 : $$\sum\limits_{r = 0}^n {\left( {r + 1} \right)\,{\,^n}{C_r}} = \left( {n + 2} \right){2^{n - 1}}.$$
Statement - 2 : $$\sum\limits_{r = 0}^n {\left( {r + 1} \right)\,{\,^n}{C_r}{x^r} = {{\left( {1 + x} \right)}^n} + nx{{\left( {1 + x} \right)}^{n - 1}}.} $$

A. Statement - 1 is false, Statement - 2 is true
B. Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1  
C. Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1
D. Statement - 1 is true, Statement - 2 is false
Answer :   Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1
Solution :
We have
$$\eqalign{ & \sum\limits_{r = 0}^n {\left( {r + 1} \right)\,{\,^n}{C_r}{x^r} = } \sum\limits_{r = 0}^n {r.{\,^n}{C_r}{x^r} + \sum\limits_{r = 0}^n {^n{C_r}{x^r}} } \cr & = \sum\limits_{r = 1}^n {r.\,\frac{n}{r}{\,^{n - 1}}{C_{r - 1}}{x^r} + {{\left( {1 + x} \right)}^n}} \cr & = nx\sum\limits_{r = 1}^n {^{n - 1}{C_{r - 1}}{x^{r - 1}} + {{\left( {1 + x} \right)}^n}} \cr & = nx{\left( {1 + x} \right)^{n - 1}} + {\left( {1 + x} \right)^n} = {\text{RHS}} \cr} $$
∴ Statement - 2 is correct.
Putting $$x = 1,$$  we get
$$\sum\limits_{r = 0}^n {\left( {r + 1} \right)\,{\,^n}{C_r} = n.\,{2^{n - 1}}} + {2^n} = \left( {n + 2} \right){.2^{n - 1}}.$$
∴ Statement - 1 is also true and statement - 2 is a correct explanation for statement - 1.

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section