Question

Solve this $$\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^x}.{e^{\sin \,x}}}}} dx = ?$$

A. $$ - 2\pi \,\ln \,2$$
B. $$ - \frac{\pi }{4}\,\ln \,2$$
C. $$ - \pi \,\ln \,2$$
D. $$ - \frac{\pi }{2}\,\ln \,2$$  
Answer :   $$ - \frac{\pi }{2}\,\ln \,2$$
Solution :
$$\eqalign{ & I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^x}.{e^{\sin \,x}}}}} dx \cr & \Rightarrow I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^{ - \left( {x + \sin \,x} \right)}}}}} dx \cr & \Rightarrow 2I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\ln \left( {\cos \,x} \right)}}{{1 + {e^{x + \sin \,x}}}}\left( {1 + {e^{\left( {x + \sin \,x} \right)}}} \right)dx} \cr & \Rightarrow 2I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\ln \left( {\cos \,x} \right)dx} \cr & \Rightarrow 2I = 2\int\limits_0^{\frac{\pi }{2}} {\ln \left( {\cos \,x} \right)dx} \cr & \Rightarrow I = - \frac{\pi }{2}\ln \,2 \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section