Question

Solution of differential equation $${x^2} = 1 + {\left( {\frac{x}{y}} \right)^{ - 1}}\frac{{dy}}{{dx}} + \frac{{{{\left( {\frac{x}{y}} \right)}^{ - 2}}{{\left( {\frac{{dy}}{{dx}}} \right)}^2}}}{{2!}} + \frac{{{{\left( {\frac{x}{y}} \right)}^{ - 3}}{{\left( {\frac{{dy}}{{dx}}} \right)}^3}}}{{3!}} + .....\,{\text{is}}\,{\text{:}}$$

A. $${y^2} = {x^2}\left( {\ln {x^2} - 1} \right) + C$$  
B. $$y = {x^2}\left( {\ln x - 1} \right) + C$$
C. $${y^2} = x\left( {\ln x - 1} \right) + C$$
D. $$y = {x^2}{e^{{x^2}}} + C$$
Answer :   $${y^2} = {x^2}\left( {\ln {x^2} - 1} \right) + C$$
Solution :
$$\eqalign{ & {x^2} = {e^{{{\left( {\frac{x}{y}} \right)}^{ - 1}}\left( {\frac{{dy}}{{dx}}} \right)}} \Rightarrow {x^2} = {e^{\left( {\frac{y}{x}} \right)\left( {\frac{{dy}}{{dx}}} \right)}} \cr & \Rightarrow \ln \,{x^2} = \frac{y}{x}\frac{{dy}}{{dx}}{\text{ or }}\int {x\,\ln \,{x^2}dx} = \int {y\,dy} \cr & {\text{Put }}{x^2} = t\, \Rightarrow 2x\,dx = dt \cr & \therefore \frac{1}{2}\int {\ln \,t\,dt = \frac{{{y^2}}}{2}} \cr & C + t\,\ln \,t - t = {y^2} \cr & {\text{or }}{y^2} = {x^2}\left( {\ln {x^2} - 1} \right) + C \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section