Question

$$\sin A + 2 \sin 2A + \sin 3A\,$$     is equal to which of the following ?
$$\eqalign{ & 1.\,\,\,\,4\sin 2A\,{\cos ^2}\left( {\frac{A}{2}} \right) \cr & 2.\,\,\,\,2\sin 2A{\left( {\sin \frac{A}{2} + \cos \frac{A}{2}} \right)^2} \cr & 3.\,\,\,\,8\sin A\cos A\,{\cos ^2}\left( {\frac{A}{2}} \right) \cr} $$
Select the correct answer using the code given below :

A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only  
D. 1, 2 and 3
Answer :   1 and 3 only
Solution :
$$\eqalign{ & {\text{Let}}\,A = {30^ \circ } \cr & \Rightarrow \sin A + 2\sin 2A + \sin 3A \cr & = \sin {30^ \circ } + 2\sin {60^ \circ } + \sin {90^ \circ } \cr & = \frac{1}{2} + \frac{{2\sqrt 3 }}{2} + 1 = \frac{{2\sqrt 3 + 3}}{2}\left( {\because 2\,{{\cos }^2}A = 1 + \cos 2A} \right) \cr & {\text{Now, }}4\sin 2A{\cos ^2}\left( {\frac{A}{2}} \right) = 2\sin 2A\left[ {1 + \cos A} \right] \cr & = 2\sin {60^ \circ }\left[ {1 + \cos {{30}^ \circ }} \right] = \frac{{2\sqrt 3 + 3}}{2} \cr & {\text{Also, }}\sin 2A = 2\sin A\cos A\,\,\& \,\,{\sin ^2}A + {\cos ^2}A = 1 \cr & 2\sin 2A{\left[ {\sin \frac{A}{2} + \cos \frac{A}{2}} \right]^2} \cr & = 2\sin 2A\left[ {{{\sin }^2}\frac{A}{2} + {{\cos }^2}\frac{A}{2} + 2\sin \frac{A}{2}\cos \frac{A}{2}} \right] \cr & = 2\sin 2A\left[ {1 + \sin A} \right] = 2\sin {60^ \circ }\left[ {1 + \sin {{30}^ \circ }} \right] = \frac{{3\sqrt 3 }}{2} \cr & \& \,\,8\sin A\cos A{\cos ^2}\left( {\frac{A}{2}} \right) \cr & = 4\sin A\cos A\left[ {1 + \cos A} \right] \cr & = 4\sin {30^ \circ }\cos {30^ \circ }\left[ {1 + \cos {{30}^ \circ }} \right] \cr & = \frac{{2\sqrt 3 + 3}}{2} \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section