Question

$${\sin ^{ - 1}}\left( {a - \frac{{{a^2}}}{3} + \frac{{{a^3}}}{9} + .....} \right) + {\cos ^{ - 1}}\left( {1 + b + {b^2} + .....} \right) = \frac{\pi }{2}{\text{ when}}$$

A. $$a = - 3\,{\text{and}}\,b = 1$$
B. $$a = 1\,{\text{and}}\,b = - \frac{1}{3}$$  
C. $$a = \frac{1}{6}\,{\text{and}}\,b = \frac{1}{2}$$
D. None of these
Answer :   $$a = 1\,{\text{and}}\,b = - \frac{1}{3}$$
Solution :
The given relation is possible when
$$\eqalign{ & a - \frac{{{a^2}}}{3} + \frac{{{a^3}}}{9} + ..... = 1 + b + {b^2} + ..... \cr & {\text{Also }} - 1 \leqslant a - \frac{{{a^2}}}{3} + \frac{{{a^3}}}{9} + ..... \leqslant 1 \cr & {\text{and}}\, - 1 \leqslant 1 + b + {b^2} + ..... \leqslant 1 \cr & \Rightarrow \left| b \right| < 1 \cr & \Rightarrow \left| {a} \right| < 3 \,{\text{ and }}\,\frac{a}{{1 + \frac{a}{3}}} = \frac{1}{{1 - b}} \cr & \Rightarrow \frac{{3a}}{{a + 3}} = \frac{1}{{1 - b}} \cr} $$
There are infinitely many solutions. But in the given options, it is satisified only when
$$a = 1\,\,{\text{and }}\,b = - \frac{1}{3}.$$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section