Question

Simplified form of $$\tan \left( {\frac{\pi }{4} + \frac{1}{2}{{\cos }^{ - 1}}\frac{a}{b}} \right) + \tan \left( {\frac{\pi }{4} - \frac{1}{2}{{\cos }^{ - 1}}\frac{a}{b}} \right){\text{ is}}$$

A. $$0$$
B. $$\frac{{2a}}{b}$$
C. $$\frac{{2b}}{a}$$  
D. $$\frac{{\pi}}{2}$$
Answer :   $$\frac{{2b}}{a}$$
Solution :
$$\eqalign{ & {\text{Let}}\frac{1}{2}{\cos ^{ - 1}}\frac{a}{b} = \theta ;{\text{ then}} \cr & {\cos ^{ - 1}}\frac{a}{b} = 2\theta ; \cr & \Rightarrow \cos 2\theta = \frac{a}{b}{\text{ then expression}} \cr & = \tan \left( {\frac{\pi }{4} + \theta } \right) + \tan \left( {\frac{\pi }{4} - \theta } \right) \cr & = \frac{{1 + \tan \theta }}{{1 - \tan \theta }} + \frac{{1 - \tan \theta }}{{1 + \tan \theta }} \cr & = \frac{{{{\left( {1 + \tan \theta } \right)}^2} + {{\left( {1 - \tan \theta } \right)}^2}}}{{\left( {1 - \tan \theta } \right)\left( {1 + \tan \theta } \right)}} \cr & = \frac{{2 + 2{{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }} = \frac{{2\left( {1 + {{\tan }^2}\theta } \right)}}{{1 - {{\tan }^2}\theta }} \cr & = \frac{{2\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}}{{\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)}} \cr & = \frac{2}{{\cos 2\theta }} = \frac{2}{{\frac{a}{b}}} = \frac{{2b}}{a} \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section