EMMCQ.com
Maths
Physics
Chemistry
Biology
Engineering Exams
JEE Main
JEE Advanced
WBJEE
MHTCET
BITSAT
VITEEE
COMEDK
GUJCET
KEAM
Medical Exams
NEET UG
Simplified form of $$\tan \left( {\frac{\pi }{4} + \frac{1}{2}{{\cos }^{ - 1}}\frac{a}{b}} \right) + \tan \left( {\frac{\pi }{4} - \frac{1}{2}{{\cos }^{ - 1}}\frac{a}{b}} \right){\text{ is}}$$
Home
Maths
Trigonometry
Inverse Trigonometry Function
Question
Question
Simplified form of $$\tan \left( {\frac{\pi }{4} + \frac{1}{2}{{\cos }^{ - 1}}\frac{a}{b}} \right) + \tan \left( {\frac{\pi }{4} - \frac{1}{2}{{\cos }^{ - 1}}\frac{a}{b}} \right){\text{ is}}$$
A.
$$0$$
B.
$$\frac{{2a}}{b}$$
C.
$$\frac{{2b}}{a}$$
D.
$$\frac{{\pi}}{2}$$
Answer :
$$\frac{{2b}}{a}$$
Solution :
$$\eqalign{ & {\text{Let}}\frac{1}{2}{\cos ^{ - 1}}\frac{a}{b} = \theta ;{\text{ then}} \cr & {\cos ^{ - 1}}\frac{a}{b} = 2\theta ; \cr & \Rightarrow \cos 2\theta = \frac{a}{b}{\text{ then expression}} \cr & = \tan \left( {\frac{\pi }{4} + \theta } \right) + \tan \left( {\frac{\pi }{4} - \theta } \right) \cr & = \frac{{1 + \tan \theta }}{{1 - \tan \theta }} + \frac{{1 - \tan \theta }}{{1 + \tan \theta }} \cr & = \frac{{{{\left( {1 + \tan \theta } \right)}^2} + {{\left( {1 - \tan \theta } \right)}^2}}}{{\left( {1 - \tan \theta } \right)\left( {1 + \tan \theta } \right)}} \cr & = \frac{{2 + 2{{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }} = \frac{{2\left( {1 + {{\tan }^2}\theta } \right)}}{{1 - {{\tan }^2}\theta }} \cr & = \frac{{2\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)}}{{\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)}} \cr & = \frac{2}{{\cos 2\theta }} = \frac{2}{{\frac{a}{b}}} = \frac{{2b}}{a} \cr} $$
Releted MCQ Question on
Trigonometry
>>
Inverse Trigonometry Function
Releted Question 1
The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$ is
A.
$$\frac{6}{{17}}$$
B.
$$\frac{7}{{16}}$$
C.
$$\frac{16}{{7}}$$
D.
none
View Answer
Releted Question 2
If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$ is
A.
$$\frac{{\sqrt {29} }}{3}$$
B.
$$\frac{{29}}{3}$$
C.
$$\frac{{\sqrt {3}}}{29}$$
D.
$$\frac{{3}}{29}$$
View Answer
Releted Question 3
The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$ is
A.
zero
B.
one
C.
two
D.
infinite
View Answer
Releted Question 4
If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$ for $$0 < \left| x \right| < \sqrt 2 ,$$ then $$x$$ equals
A.
$$ \frac{1}{2}$$
B.
1
C.
$$ - \frac{1}{2}$$
D.
$$- 1$$
View Answer
Practice More Releted MCQ Question on
Inverse Trigonometry Function
Practice More MCQ Question on
Maths
Section
Algebra
Sequences and Series
Quadratic Equation
Complex Number
Matrices and Determinants
Permutation and Combination
Binomial Theorem
Mathematical Induction
Mathematical Reasoning
Statistics and Probability
Statistics
Probability
Calculus
Sets and Relations
Function
Limits
Continuity
Differentiability and Differentiation
Application of Derivatives
Differential Equations
Indefinite Integration
Definite Integration
Application of Integration
Geometry
Straight Lines
Circle
Parabola
Ellipse
Hyperbola
Locus
3D Geometry and Vectors
Three Dimensional Geometry
Trigonometry
Trigonometric Ratio and Identities
Trignometric Equations
Properties and Solutons of Triangle
Inverse Trigonometry Function