Question

$${\sec ^2}\theta = \frac{{4xy}}{{{{\left( {x + y} \right)}^2}}}$$    is true if and only if

A. $$x + y \ne 0$$
B. $$x = y,x \ne 0$$  
C. $$x = y$$
D. $$x \ne 0,y \ne 0$$
Answer :   $$x = y,x \ne 0$$
Solution :
We have $${\sec ^2}\theta = \frac{{4xy}}{{{{\left( {x + y} \right)}^2}}}$$
But $${\sec ^2}\theta \geqslant 1$$
$$\eqalign{ & \Rightarrow \,\,\frac{{4xy}}{{{{\left( {x + y} \right)}^2}}} \geqslant 1 \cr & \Rightarrow \,\,4xy \geqslant {x^2} + {y^2} + 2xy \cr & \Rightarrow \,\,{x^2} + {y^2} - 2xy \leqslant 0 \cr & \Rightarrow \,\,{\left( {x - y} \right)^2} \leqslant 0 \cr} $$
⇒ $$x - y = 0$$   [as perfect square of real number can never be negative]
Also then $$x \ne 0$$  as then $${\sec ^2}\theta $$  will become indeterminate.

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section