Solution :

Let height of tower $$MN = h$$
In $$\Delta QMN$$ we have
$$\eqalign{
& \tan {30^ \circ } = \frac{{MN}}{{QM}} \cr
& \therefore \,\,QM = \sqrt 3 \,h = MR\,\,\,.....\left( 1 \right) \cr
& {\text{Now in }}\Delta MNP \cr
& MN = PM\,\,\,\,\,\,\,.....\left( 2 \right) \cr
& {\text{In }}\Delta PMQ\,\,{\text{we have :}} \cr
& MP = \sqrt {{{\left( {200} \right)}^2} - {{\left( {\sqrt 3 \,h} \right)}^2}} \cr
& \therefore \,\,{\text{From }}\left( 2 \right),{\text{ we get :}} \cr
& \sqrt {{{\left( {200} \right)}^2} - {{\left( {\sqrt 3 \,h} \right)}^2}} = h \cr
& \Rightarrow \,\,h = 100\,m \cr} $$