Question

$$\int_{ - \pi }^\pi {\frac{{2x\left( {1 + \sin \,x} \right)}}{{1 + {{\cos }^2}\,x}}dx} $$     is-

A. $$\frac{{{\pi ^2}}}{4}$$
B. $${\pi ^2}$$  
C. zero
D. $$\frac{\pi }{2}$$
Answer :   $${\pi ^2}$$
Solution :
$$\eqalign{ & \int_{ - \pi }^\pi {\frac{{2x\left( {1 + \sin \,x} \right)}}{{1 + {{\cos }^2}\,x}}dx} \cr & = \int_{ - \pi }^\pi {\frac{{2x\,dx}}{{1 + {{\cos }^2}\,x}} + 2\int_{ - \pi }^\pi {\frac{{x\,\sin \,x}}{{1 + {{\cos }^2}\,x}}dx} } \cr & = 0 + 4\int_0^\pi {\frac{{x\,\sin \,x\,dx}}{{1 + {{\cos }^2}\,x}}\,;\,\,\,\,\,\,\,\,\,\left[ {\because \int\limits_{ - a}^a {f\left( x \right)dx = 0} } \right]} \cr} $$
if $$f\left( x \right)$$  is odd $$ = 2\int\limits_0^a {f\left( x \right)dx} $$    if $$f\left( x \right)$$  is even.
$$\eqalign{ & I = 4\int_0^\pi {\frac{{\left( {\pi - x} \right)\sin \left( {\pi - x} \right)}}{{1 + {{\cos }^2}\left( {\pi - x} \right)}}} dx \cr & I = 4\int_0^\pi {\frac{{\left( {\pi - x} \right)\sin \,x}}{{1 + {{\cos }^2}x}}} dx \cr & \Rightarrow I = 4\pi \int_0^\pi {\frac{{\sin \,x\,dx}}{{1 + {{\cos }^2}x}}} - 4\int {\frac{{x\,\sin \,x\,dx}}{{1 + {{\cos }^2}x}}} \cr & \Rightarrow 2I = 4\pi \int_0^\pi {\frac{{\sin \,x}}{{1 + {{\cos }^2}x}}dx} \cr & {\text{Put cos }}x = t\,\, \Rightarrow - \sin \,x\,dx = dt \cr & \therefore I = - 2\pi \int\limits_1^{ - 1} {\frac{1}{{1 + {t^2}}}dt} = 2\pi \int\limits_{ - 1}^1 {\frac{1}{{1 + {t^2}}}dt} \cr & = 2\pi \left[ {{{\tan }^{ - 1}}t} \right]_{ - 1}^1 \cr & = 2\pi \left[ {{{\tan }^{ - 1}}1 - {{\tan }^{ - 1}}\left( { - 1} \right)} \right] \cr & = 2\pi \left[ {\frac{\pi }{4} - \left( {\frac{{ - \pi }}{4}} \right)} \right] \cr & = 2\pi .\frac{\pi }{2} \cr & = {\pi ^2} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section