Question

$$\int\limits_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\frac{{dx}}{{1 + \cos \,x}}} $$    is equal to-

A. $$2$$  
B. $$ - 2$$
C. $$\frac{1}{2}$$
D. $$ - \frac{1}{2}$$
Answer :   $$2$$
Solution :
$$\eqalign{ & {\text{We have}} \cr & I = \int\limits_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\frac{{dx}}{{1 + \cos \,x}}} .....(1) \cr & = \int\limits_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\frac{{dx}}{{1 + \cos \,\left( {\pi - x} \right)}}} \cr & \left[ {{\text{Using the prop}}{\text{. }}\int\limits_a^b {f\left( x \right)dx = \int\limits_a^b {\left( {f\left( {a + b - x} \right)} \right.dx} } } \right] \cr & = \int\limits_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\frac{{dx}}{{1 - \cos \,x}}.....(2)} \cr & {\text{Adding (1) and (2), we get}} \cr & 2I = \int\limits_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {\left( {\frac{1}{{1 + \cos \,x}} + \frac{1}{{1 - \cos \,x}}} \right)dx} \cr & = \int\limits_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}} {2\,{\text{cose}}{{\text{c}}^2}x\,dx = 2 - \left( { - \cot \,x} \right)_{\frac{\pi }{4}}^{\frac{{3\pi }}{4}}} \cr & = - 2\left[ {\cot \,\frac{{3\pi }}{4} - \cot \,\frac{\pi }{4}} \right] \cr & = - 2\left( { - 1 - 1} \right)\,\, = 4 \cr & \Rightarrow I = 2 \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section