$$\eqalign{
& \frac{{Mg}}{A} = {P_0}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{P_0}V_0^\gamma = P{V^\gamma } \cr
& Mg = {P_0}A\,......\left( 1 \right)\,\,\,\,\,\,\,\,\,\,\,{P_0}Ax_0^\gamma = PA{\left( {{x_0} - x} \right)^\gamma } \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,P = \frac{{{P_0}x_0^\gamma }}{{{{\left( {{x_0} - x} \right)}^\gamma }}} \cr} $$
Let piston is displaced by distance $$x$$

$$\eqalign{
& Mg - \left( {\frac{{{P_0}x_0^\gamma }}{{{{\left( {{x_0} - x} \right)}^\gamma }}}} \right)A = {F_{{\text{restoring }}}} \cr
& {P_0}A\left( {1 - \frac{{x_0^\gamma }}{{{{\left( {{x_0} - x} \right)}^\gamma }}}} \right) = {F_{{\text{restoring }}}}\,\left[ {{x_0} - x \approx {x_0}} \right] \cr
& F = - \frac{{\gamma {P_0}Ax}}{{{x_0}}} \cr} $$
$$\therefore $$ Frequency with which piston executes SHM.
$$f = \frac{1}{{2\pi }}\sqrt {\frac{{\gamma {P_0}A}}{{{x_0}M}}} = \frac{1}{{2\pi }}\sqrt {\frac{{\gamma {P_0}{A^2}}}{{M{V_0}}}} $$