$$\eqalign{
& J = \frac{I}{{2\pi r\ell }} = \frac{{\frac{{dV}}{{dR}}}}{{2\pi r\ell }}\,......\left( {\text{i}} \right) \cr
& dR = \rho \frac{{dr}}{{2\pi r\ell }} = \frac{1}{\sigma } \times \frac{{dr}}{{2\pi r\ell }}\,......\left( {{\text{ii}}} \right) \cr
& {\text{Now}}\,E = - \frac{{dV}}{{dr}} \cr
& \therefore dV = - Edr = - \frac{\lambda }{{2\pi \in r}}dr\,......\left( {{\text{iii}}} \right) \cr} $$

From (i), (ii), and (iii)
$$\eqalign{
& J = \frac{1}{{2\pi r\ell }}\left[ {\frac{{\lambda dr}}{{2\lambda \in r}} \times \frac{{\sigma 2\pi r\ell }}{{dr}}} \right] = \frac{{\lambda \sigma }}{{2\pi \in r}}\,......\left( {{\text{iv}}} \right) \cr
& {\text{Also}}\,I = \frac{{dV}}{{dR}} = \frac{{ - \lambda }}{{2\pi \in r}}dr \times \frac{{\sigma \times 2\pi r\ell }}{{dr}} = \frac{{ - \lambda \sigma \ell }}{ \in }\,......\left( {\text{v}} \right) \cr} $$
Here negative sign signifies that the current is decreasing
$${\text{But}}\,I = \frac{{d\left( q \right)}}{{dt}} = \frac{{d\left( {\lambda \ell } \right)}}{{dt}} = \ell \frac{{d\lambda }}{{dt}}\,......\left( {{\text{vi}}} \right)$$
From (v) and (vi)
$$\ell \frac{{d\lambda }}{{dt}} = - \frac{{\lambda \sigma \ell }}{ \in } \Rightarrow \frac{{d\lambda }}{\lambda } = \frac{{ - \sigma }}{{ \in \ell }}dt$$
on integrating
$$\eqalign{
& \int\limits_{{\lambda _0}}^\lambda {\frac{{d\lambda }}{\lambda }} = - \frac{\sigma }{ \in }\int\limits_0^t {dt} \cr
& \therefore {\log _e}\frac{\lambda }{{{\lambda _0}}} = - \frac{{\sigma t}}{ \in }\,\,\,\,\,\therefore \lambda = {\lambda _0}{e^{ - \frac{\sigma }{ \in }t}} \cr} $$
Substituting this value in (iv) we get
$$J = \frac{{\sigma {\lambda _0}}}{{2\pi \in r}}{e^{ - \frac{\sigma }{\smallint }t}}$$